Differentiate the function f(x) = sin(x)/(x^2 +1) , giving your answer in the form of a single fraction. Is x=0 a stationary point of this curve?

The key concepts to apply in this question will be the product and chain rules, namely: if  f(x)=g(x)h(h), then f'(x)=g(x)h'(x) + g'(x)h(x), and if h(x)=u(v(x)), then h'(x)=u'(v(x))v'(x).

Equivalently, you may prefer to apply the quotient rule and the chain rule.

To answer this question, you also need to know that x is a stationary point if f'(x)=0.

Worked solution:

Here we have g(x)=sin(x) and h(x)=(x2+1)-1. We differentiate these to get g'(x)=cos(x) and h'(x)=(-1)(2x)(x2+1)-2, using the chain rule to differentiate h(x).

Now we put these together (using the product rule) to get f'(x)=sin(x)(-1)(2x)(x2+1)-2+cos(x)(x2+1)-1.

Finally, the question asks for the final answer in the form of a single fraction, so we rearrange to get: f'(x)=(cos(x)*(x2+1) - (2x)*sin(x))/(x2+1)2.

To finish off we need to check the value of f'(x) at =0: f'(0)=1/12=1. This is not 0, so x=0 is not a stationary point.

BC
Answered by Bromlyn C. Maths tutor

4933 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


Maths C1 2017 1. Find INT{2x^(5) + 1/4x^(3) -5}


For what values of k does the graph y=x^(2)+2kx+5 not intersect the x-axis


Differentiate and then integrate: x^2 + 3x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences