Find the gradient of the line Y = X^3 + X + 6 when X = 4

Step 1: Differentiate the equation Y = X^3 + X + 6 to find the gradient of the line at any point. To do this, multiply each term of X by the old power and -1 from that power. This makes dy/dx = 3X^2 + 1.Step 2: As X=4, Substitute all terms of X with 4. This means that the gradient at the point (4,3) = 3(4)^2 + 1 = 49.

HO
Answered by Henry O. Maths tutor

3428 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the substitution of u=6x+5 find the value of the area under the curve f(x)=(2x-3)(6x+%)^1/2 bounded between x=1 and x=1/2 to 4 decimal places.


If f'(x)=3x(x - 1), find f(x)


Let f(x) = 3x^4 - 8x^3 - 3. Find the x- values of the stationary points of this function.


The General Form of the equation of a circle is x^2 + y^2 + 2gx +2fy + c = 0. Find the centre of the circle and the radius of the circle in terms of g f and c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning