Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?

We can turn this into a constrained optimization problem. Let's denote x the side of the parking lot that is perpendicular to the highway, and y the side that is parallel to the highway. We therefore need to minimize f(x,y) = 2x + y, where xy = 5000.

From the second relation we see that we can represent y as being 5000 / x. So the problem becomes the unconstrained minimization of f(x) = 2x + 5000/x.

We differentiate f(x) with respect to x and we obtain 2 - 5000/x^2. Setting this to 0 yields 5000/x^2 = 2, so x^2 = 2500.

This equation gives 2 solutions x = 50, and x = -50, but we are only interested in the positive value, because the length of a fence cannot be negative. Knowing that y = 5000/x, we get our final solution: x = 50, y = 100.

EB
Answered by Emil B. Maths tutor

6348 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 2e^(3x^2+6x)


The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?


How to write an algebraic fraction in a given form e.g. (3+13x-6x^2)/(2x-3) as Ax + B + C/(2x-3) where A, B and C are natural numbers


Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning