Solve the differential equation: (dy/dx) = 6xy^2

Start by recognising that this is a separable differential equation; it can be written with all of the x's on one side of the equals sign, and all of the y's on the other. The first step is to rearrange so that:

(1/y^2)(dy/dx) = 6x

Now integrating both sides with respect to x gives:

integral (1/y^2 ) dy = integral (6x) dx

Carry out the integral:

-1/y = 3x^2 + k

And rearrange to give:

y = -1/(3x^2 + k)

MJ
Answered by Michael J. Maths tutor

9502 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The quadratic equation (k+1)x^2 + (5k-3)x + 3k = 0 has equal roots, find the possible values of the real number k.


f(x) = x^3 - 13x^2 + 55x - 75 , find the gradient of the tangent at x=3


A hollow sphere of radius r is being filled with water. The surface area of a hemisphere is 3pi*r^2. Question: When the water is at height r, and filling at a rate of 4cm^3s^-1, what is dS/dT?


integrate [xe^(-x)] with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences