A curve has equation x^2 + 2xy – 3y^2 + 16 = 0. Find the coordinates of the points on the curve where dy/dx =0

We would do this by differentiating everything individually so to differentiate xwe multiply the xby the power which is 2 and then take the power down by 1 to make 2x. To differentiate 2xy we would use the product rule. so we would differentiate 2x and y with respect to x to get 2 and dy/dx respectively. The formula of the product rule is where c=ab the differential of c with respect x = (a * db/dx) + ( b* da/dx) meaning it is (2x * dy/dx) + 2y .To differentiate -3y2 ,we do it how we would do it with x which i showed to do earlier but then multiply by dy/dx making -6y * dy/dx we also know that the differential of 16 and 0 is 0 as they are constant. We can then put things in terms of dy/dx to make                       dy/dx (2x-6y)+2x+2y = 0 this means that dy/dx (2x-6y) = -2x-2y . If dy/dx =0 then the left hand side is 0 meaning -2x-2y =0 meaning that if we divide both sides by -2 we get x+y =0. This can turn into x=-y if you subtract y from both sides meaning if we subsitute -y for x on the original equation we get (-y)2 +2(-y)*y-3y2 +16 = 0 which can be simplified to get -4y2 =-16 if we divide both sides by -4 we get y=4 meaning y can be 2 or -2 as from above x=-y we get 2 sets of coordinates (2,-2) and (-2,2)

TK
Answered by Tom K. Maths tutor

4494 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate f(x) with respect to x. Find the stationary value and state if it is a maxima, minima or point of inflection f(x) = 6x^3 + 2x^2 + 1


Differentate sin(x^2+1) with respect to x


f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.


4^x - 2^x+1 - 15 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences