Differentiate with respect to x: y = ln(x^2+4*x+2).

Let u = x2+4x+2 so y = ln(u).

Then dy/du = 1/u and du/dx = 2x+4.

Using the chain rule we have:

dy/dx = (dy/du)*(du/dx)

= (1/u)*(2x+4)

= (2x+4)/(x2+4x+2).

OL
Answered by Okim L. Maths tutor

4338 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let f(x) = x * sin(2x). Find the area beneath the graph of y = f(x), bounded by the x-axis, the y-axis and the line x = π/2.


What is the chain rule?


How do polar coordinate systems work?


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences