Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.

We know from trigonmetric identities that cos(2x) = 2cos^2(x) -1, therefore cos^2(x) = 0.5(1+cos(2x)).

Subbing this in gives the following integrand: 0.5(1+cos(2x))sin(2x).

We can now split the integral into the sum of two simpler ones with integrands 0.5sin(2x) and 0.5sin(2x)cos(2x), the latter of which is equal to 0.25sin(4x).

These integrate nicely to -0.25cos(2x)-(1/16)cos(4x) + c where c is the constant of integration.

PP
Answered by Patrick P. Maths tutor

5172 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The gradient of the curve at A is equal to the gradient of the curve at B. Given that point A has x coordinate 3, find the x coordinate of point B.


How to integrate 5x^2?


Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


Differentiate the following: y=sin(x^2+2)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning