Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.

We know from trigonmetric identities that cos(2x) = 2cos^2(x) -1, therefore cos^2(x) = 0.5(1+cos(2x)).

Subbing this in gives the following integrand: 0.5(1+cos(2x))sin(2x).

We can now split the integral into the sum of two simpler ones with integrands 0.5sin(2x) and 0.5sin(2x)cos(2x), the latter of which is equal to 0.25sin(4x).

These integrate nicely to -0.25cos(2x)-(1/16)cos(4x) + c where c is the constant of integration.

PP
Answered by Patrick P. Maths tutor

4897 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y^3 = 8.08, approximate y.


Solve the equation 3x^2/3 + x^1/3 − 2 = 0


Find the first and second derivatives of: y = 6 - 3x -4x^-3, and find the x coordinates of the line's turning points


When using the trapezium rule to approximate area underneath a curve between 2 limits, what is the effect of increasing the number of strips used?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences