Find the indefinite integral of sin(2x)(cos^2(x)) with respect to x.

We know from trigonmetric identities that cos(2x) = 2cos^2(x) -1, therefore cos^2(x) = 0.5(1+cos(2x)).

Subbing this in gives the following integrand: 0.5(1+cos(2x))sin(2x).

We can now split the integral into the sum of two simpler ones with integrands 0.5sin(2x) and 0.5sin(2x)cos(2x), the latter of which is equal to 0.25sin(4x).

These integrate nicely to -0.25cos(2x)-(1/16)cos(4x) + c where c is the constant of integration.

PP
Answered by Patrick P. Maths tutor

4984 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If a 5 metre ladder is resting against a wall and the bottom of the ladder is 3 metres away from the wall, and someone pulls the bottom of the ladder away at a speed of 1 metre per second, calculate the speed of the top of the ladder after t seconds


A stone, of mass m , falls vertically downwards under gravity through still water. The initial speed of the stone is u . Find an expression for v at time t .


Integrate sinx*ln(cosx) with respect to x.


Find the stationary points of the curve y=x^4-8x^2+3 and determine their nature.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences