Find dy/dx at t=3, where x=t^3-5t^2+5t and y=2t^2

Using the product rule, we find that dy/dx= dy/dt multiplied by dt/dx, where dt/dx is the reciprocal of dx/dt

dx/dt= 3t^2-10t+5, dy/dt= 4t

At t=3, dx/dt= 3(3)^2-10(3)+5=2,  dy/dt= 4(3)= 12

Therefore, dt/dx= 1/2

dy/dx= dy/dt x dt/dx= 12 x 1/2= 6

OA
Answered by Oore A. Maths tutor

4747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that x = 1/2 is a root of the equation 2x^3 – 9x^2 + kx – 13 = 0, find the value of k and the other roots of the equation.


The region R is bounded by the curve y=sqrt(x)+5/sqrt(x) the x-axis and the lines x = 3, x = 4. Find the volume generated when R is rotated through four right-angles about the x-axis. Give your answer correct to the nearest integer.


Find f''(x), Given that f(x)=5x^3 - 6x^(4/3) + 2x - 3


Integrate x((x^2)+2) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning