how do you solve these simultaneous equations?

6x + y = 8 (1)       4x - y = 12 (2)

 

Method 1 elimination:

-Adding/subtracting the two equations together to eliminate one of the unknowns 

 (1) + (2)

  6x + y = 8

+  4x - y = 12

10x = 20        (/10)

x= 2

sub 'x=2' into (2)

4(2) - y = 12

8 - y = 12      (+y) 

8 = 12 + y     (-12)

-4 = y

Method 2 substitution:

-rearranging one of the equations to make an unknown the subject 

rearrange (2)

4x - y = 12 

4x = y + 12      (+y)

y= 4x - 12        (-12)

sub 'y = 4x - 12' into (1)

6x + '4x - 12' = 8

10x - 12 = 8        (+12)

10x = 20

x = 2

sub 'x=2' into 'y = 4x - 12'

y = 4(2) - 12 

y = 8 - 12

y = -4

SG
Answered by Shriya G. Maths tutor

4824 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If we know that y is directly proportional to x and that when x=1, y=3, then what is the value of x when y=4?


Solve 2x+1=11


16cos30° - 5tan60° = √x. Find the value of x.


3 teas and 2 coffees have a total cost of £7.80. 5 teas and 4 coffees have a total cost of £14.20. Work out the cost of one tea and the cost of one coffee.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences