how do you solve these simultaneous equations?

6x + y = 8 (1)       4x - y = 12 (2)

 

Method 1 elimination:

-Adding/subtracting the two equations together to eliminate one of the unknowns 

 (1) + (2)

  6x + y = 8

+  4x - y = 12

10x = 20        (/10)

x= 2

sub 'x=2' into (2)

4(2) - y = 12

8 - y = 12      (+y) 

8 = 12 + y     (-12)

-4 = y

Method 2 substitution:

-rearranging one of the equations to make an unknown the subject 

rearrange (2)

4x - y = 12 

4x = y + 12      (+y)

y= 4x - 12        (-12)

sub 'y = 4x - 12' into (1)

6x + '4x - 12' = 8

10x - 12 = 8        (+12)

10x = 20

x = 2

sub 'x=2' into 'y = 4x - 12'

y = 4(2) - 12 

y = 8 - 12

y = -4

SG
Answered by Shriya G. Maths tutor

4847 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically the simultaneous equations: x^2+y^2 = 25 and y-3x=13


There are 30 yellow sweets and 10 black sweets in a bag. Two sweets are taken out at random without replacement. Work out the probability that the two sweets are the same colour.


LOWER TIER a) Multiply the following out: (x+3)(x-4). b) Factorise the following equation into two bracket form: x^2+7x+12


John is n years old where n is an whole number. Kim is three years younger than John and Vanessa is half of Kim's age. Write an expression for Vanessa's age in terms of n.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences