Let y(x) be a function with derivative y'(x)=x^2-2 and y(0) =7. What is the value of y at x = 3?

Integrate to get y(x) = (1/3)x^3 -2x+c where c is a constant. Substitute in our data 7 =y(0) = (1/3)(0)^3 -2*(0) +c = c. So y(x) =(1/3)x^3 -2x+7 and therefore y(3) = (1/3)(3)^3 -2*3 +7 = 9-6+7 = 10

DB
Answered by Dawn B. Maths tutor

3672 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why do we get cos(x) when we differentiate sin(x)?


When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


Find the second derivate d^2y/dx^2 when y = x^6 + sqrt(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences