Let y(x) be a function with derivative y'(x)=x^2-2 and y(0) =7. What is the value of y at x = 3?

Integrate to get y(x) = (1/3)x^3 -2x+c where c is a constant. Substitute in our data 7 =y(0) = (1/3)(0)^3 -2*(0) +c = c. So y(x) =(1/3)x^3 -2x+7 and therefore y(3) = (1/3)(3)^3 -2*3 +7 = 9-6+7 = 10

DB
Answered by Dawn B. Maths tutor

3714 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the result: ∫(2xsin(x)cos(x))dx = -1⁄2[xcos(2x)-1⁄2sin(2x)] calculate ∫sin²(x) dx using integration by parts


How do I solve x^2 > 6 - x


Find the stationary point of the function f(x) = x^2 +2x + 5


How to differentiate using the Product Rule


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences