Let y(x) be a function with derivative y'(x)=x^2-2 and y(0) =7. What is the value of y at x = 3?

Integrate to get y(x) = (1/3)x^3 -2x+c where c is a constant. Substitute in our data 7 =y(0) = (1/3)(0)^3 -2*(0) +c = c. So y(x) =(1/3)x^3 -2x+7 and therefore y(3) = (1/3)(3)^3 -2*3 +7 = 9-6+7 = 10

DB
Answered by Dawn B. Maths tutor

4135 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using Integration by Parts, find the indefinite integral of ln(x), and hence show that the integral of ln(x) between 2 and 4 is ln(a) - b where a and b are to be found


Differentiate cos(2x)/(x) with respect to x


At each point P of a curve for which x > 0 the tangent cuts the y-axis at T, and N is the foot of the perpendicular from P to the y-axis. If T is always 1 unit below N and the curve passes through the point (1,0), find the Cartesian equation of the curve.


Derive the quadratic equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning