Let y(x) be a function with derivative y'(x)=x^2-2 and y(0) =7. What is the value of y at x = 3?

Integrate to get y(x) = (1/3)x^3 -2x+c where c is a constant. Substitute in our data 7 =y(0) = (1/3)(0)^3 -2*(0) +c = c. So y(x) =(1/3)x^3 -2x+7 and therefore y(3) = (1/3)(3)^3 -2*3 +7 = 9-6+7 = 10

DB
Answered by Dawn B. Maths tutor

4208 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The shortest side of a triangle is 4.3m long. Two of the angles are 45.1 and 51.2 degrees respectively. Find the length of the longest side.


Can you differentiate the following function using two methods:- y = e^(2x+1)


Integrate 2x/[(x+1)(2x-4)


Let f(x)= x^3 -9x^2 -81x + 12. Calculate f'(x) and f''(x). Use f'(x) to calculate the x-values of the stationary points of this function.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning