A curve has equation y = e^x + 10sin(4x), find the value of the second derivative of this equation at the point x = pi/4.

Firstly, differentiate y with respect to x once to obtain the equation dy/dx = e^x + 40cos(4x). Then differentiate this resultant expression, with respect to x, to acquire a solution for (d^2)y/d(x^2) = e^x - 160sin(4x). The final step of this question is to substitute our value for x (x = pi/4) back into the equation for (d^2)y/d(x^2). This yields the result (d^2)y/d(x^2) = e^(pi/4) at the point x = pi/4.

JI
Answered by Joe I. Maths tutor

3313 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y=x^3-4x^2+2 at the point (3,-7)


If y = 5x^3 - 2x^2 + 2, what is dy/dx?


Implicitly differentiate the following equation to find dy/dx in terms of x and y: 2x^2y + 2x + 4y – cos (piy) = 17


A-level circle question


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning