Solve the equation 8x^6 + 7x^3 -1 = 0

The first thing to recognise is this is a quadratic in disguise, therefore we can rewrite the equation in terms of a new variable y.
Where y=x3
The equation then becomes 8y2+7y-1=0 .
We then factorise this into (8y-1)(y+1)=0 and work out y=1/8 or -1.

Then substitute this into the equation for y=x3 so that x3=1/8 and x3=-1
Solving for x gives us x=1/2 or -1
Things to note: A common mistake is that even though the square root of -1 has no solution the cube root of -1 does.

KP
Answered by Kelan P. Maths tutor

7846 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When calculating a question with a double integral question between two different ranges which range relates to which integration variable.


Differentiate 3x^2 with respect to x


y = 4x/(x^2+5). a) Find dy/dx, writing your answer as a single fraction in its simplest form. b) Hence find the set of values of x for which dy/dx < 0


Differentiate f(x) = 14*(x^2)*(e^(x^2))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning