A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.

To anwser this question we need to find a linear equation of the form y=mx+c which we can rearrange to give the desired equation. Firstly, we must find the gradient at the point S given by dy/dx. Using the parametric equations we have dx/dt=2t-1 by standard differentiation and dy/dt=4/(1-t)^2 by the quotient rule of differentiation. We can know find the gradient of the line at the point S. dy/dx=(dy/dt)/(dx/dt)=4/(2t-1)(1-t)^2 and t=-1 at the point S leaving us with gradient m=-1/3. We now have an equation of the form y=-(1/3)x+c. We know x=2, y=-2 at S given t=-1. We can now find c by substituting the values of x and y into our equation and rearranging to find c=-4/3. We are left with y=-(1/3)x-(4/3) which if we multiply through by 3 and rearrange to get a 0 on one side of the equation we are left with x+3y+4=0 which is what we want.

MF
Answered by Marcus F. Maths tutor

8021 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = 2x(x^2 – 1)^5, show that dy/dx = g(x)(x^2 – 1)^4 where g(x) is a function to be determined.


By writing tan x as sin x cos x , use the quotient rule to show that d dx ðtan xÞ ¼ sec2 x .


Find the intergal of 2x^5 -1/(4x^3) -5 giving each term in its simplest form.


Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning