A curve has parametric equations x=t(t-1), y=4t/(1-t). The point S on the curve has parameter t=-1. Show that the tangent to the curve at S has equation x+3y+4=0.

To anwser this question we need to find a linear equation of the form y=mx+c which we can rearrange to give the desired equation. Firstly, we must find the gradient at the point S given by dy/dx. Using the parametric equations we have dx/dt=2t-1 by standard differentiation and dy/dt=4/(1-t)^2 by the quotient rule of differentiation. We can know find the gradient of the line at the point S. dy/dx=(dy/dt)/(dx/dt)=4/(2t-1)(1-t)^2 and t=-1 at the point S leaving us with gradient m=-1/3. We now have an equation of the form y=-(1/3)x+c. We know x=2, y=-2 at S given t=-1. We can now find c by substituting the values of x and y into our equation and rearranging to find c=-4/3. We are left with y=-(1/3)x-(4/3) which if we multiply through by 3 and rearrange to get a 0 on one side of the equation we are left with x+3y+4=0 which is what we want.

MF
Answered by Marcus F. Maths tutor

7853 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate the function f(x) = ax^2 + bx + c over the interval [0,1], where a, b and c are constants.


How do you solve simultaneous questions?


How do I know which trigonometric identity to use in any given situation?


The line AB has equation 5x + 3y + 3 = 0. The point with coordinates (2k + 3, 4 -3k) lies on the line AB. How do you find the value of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning