A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).

i) Using the power rule, f'(x) = 3x2 - 6x ii) To find stationary points, set f'(x) to 0: 3x2 - 6x = 0. 3x(x - 2) = 0. x = 0  or  x = 2 So the co-ordinates are (0,f(0)) = (0, 1), and (2,f(2)) = (2,-3).

SS
Answered by Sam S. Maths tutor

5127 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y = 4x^3 . Differentiate with respect to y.


Find dy/dx, given that y=(3x+1)/(2x+1)


a)Given that 10 cosec^2(x) = 16 - 11 cot(x) , find the possible values of tan x .


Given that y = exp(2x) * (x^2 +1)^(5/2), what is dy/dx when x is 0?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning