A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).

i) Using the power rule, f'(x) = 3x2 - 6x ii) To find stationary points, set f'(x) to 0: 3x2 - 6x = 0. 3x(x - 2) = 0. x = 0  or  x = 2 So the co-ordinates are (0,f(0)) = (0, 1), and (2,f(2)) = (2,-3).

SS
Answered by Sam S. Maths tutor

4900 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).


How do I differentiate a trigonometric function for something that is not just a single variable (e.g. d/dx (sin(3x))?


The line AB has equation 5x+3y+3=0. It is parallel to a line with equation y=mx+7. What is m?


A particle of mass 5kg is held at rests on a slope inclined at 30 degrees to the horizontal. The coefficient of friction for the slope is 0.7, determine whether the particle will move when released.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences