Prove 2^n >n for all n belonging to the set of natural numbers

for n=1 2^1=2  2>1 hence true for n=1 assume true for n then 2^n >n we need to show 2^n+1 > n+1 since 2^n >n 2^n+1 >2n =n+n >n+1 for n>1 hence by induction since true for n= 1 and if true for n then true for n+1 the statement is true for all natural numbers

MM
Answered by Matthew M. Maths tutor

3504 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following equation with respect to x; sinx + 3x^2 - 2.


Find the equation of the normal to the curve x^3 + 2(x^2)y = y^3 + 15 at the point (2, 1)


How do you integrate (x/(x+1)) dx without using substitution.


I already done this.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning