Prove 2^n >n for all n belonging to the set of natural numbers

for n=1 2^1=2  2>1 hence true for n=1 assume true for n then 2^n >n we need to show 2^n+1 > n+1 since 2^n >n 2^n+1 >2n =n+n >n+1 for n>1 hence by induction since true for n= 1 and if true for n then true for n+1 the statement is true for all natural numbers

MM
Answered by Matthew M. Maths tutor

3251 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you solve trigonometric equations?


Find the derivative of the function y = (2x + 12)/(1-x)


1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.


What's the integral of x^2 +3/x, with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences