Integrate (x+3)^(1/2) .dx

[whiteboard feature does not seam to be working here] 

Here we need to make a U sibstitution. So we take (x+3) and make this equal U so we now have the integral of u^1/2   . dx

In order to switch to .du and do this integral we need to find du in terms of dx. 

Hence by writting u=(x+3)  we find that du/dx =  =2   so du=2.dx This leaves us with the integral of 2u^(1/2) .du which we can evaluate to be (4/3)(u^1.5). 

Now to get this in terms of x for a final answer we know u=(x+3) so we just rewrite the answer in terms of x giving a final answer: 

(4/3)((x+3)^1.5)

CZ
Answered by Callum Z. Maths tutor

3960 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate this equation: xy^2 = sin(3x) + y/x


f(x)=ln(3x+1), x>0 and g(x)=d/dx(f(x)), x>0, find expressions for f^-1 and g


What is the difference between a definite integral and an indefinite integral?


When would you apply the product rule in differentiation and how do you do this?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences