y' = (2x)/(y+1). Solve for y.

y' = dy/dx = (2x)/(y+1) Separate x's and y's in this case.

y + 1 dy = 2x dx Now integrate both sides.

(y2)/2 + y = (2x2)/ 2 + C  Don't forget the constant. 

(y2)/2 + y = x2 + C 

DM
Answered by Daniel M. Maths tutor

4421 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Intergrate 8x^3 + 6x^(1/2) -5 with respect to x


Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.


1)Simplify sqrt 98 - sqrt 32, givimg your answer in the form k sqrt 2 where k is an integer.


Integral of sin^x dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning