Differentiate y = x(x+3)^4

 To differentiate this function we use the product rule. In the product rule we, leave the first alone, differentiate the second, and leave the second alone, differentiate the first.                                                                                                                  Say y = U * V (U and V are both functions of x)                                                                                                                      Then in general we have y' = U dV/dx + V dU/dx For this example we have; y' = x * d/dx (x+3)4 +  (x+3)4 d/dx x                      y' = x * 4 * (x+3)3 * 1 +  (x+3)4  * 1                                                                                                                                        When differentiating bracketed term we start differentiating outside the brackets and work our way in, therefore initially treating the brackets like a single term then accounting for the terms inside the brackets. To simplify the final expression we now take out the common factor.                                                                                                                                                       y' =  (x+3)3 [4x + (x+3)]                                                                                                                                                         Therefore, y' = (x+3)3 (5x+3)

HH
Answered by Harry H. Maths tutor

3573 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the differential equation dy/dx = y/x(x + 1) , given that when x = 1, y = 1. Your answer should express y explicitly in terms of x.


Find the integral of ((2(7x^(2)-xe^(-2x))-5)/x) . Given that y=27 at x=1, solve the differential equation dy/dx=((2(7x^(2)-xe^(-2x))-5)/-3x).y^(2/3) in terms of y.


Find the equation to the tangent to the curve x=cos(2y+pi) at (0, pi/4)


Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences