Suppose a population of size x experiences growth at a rate of dx/dt = kx where t is time measured in minutes and k is a constant. At t=0, x=xo. If the population doubles in 5 minutes, how much longer does it take for the population to reach triple of Xo.

2.925 minutes This question involves solving a first order differential equation via the separation of variables and then substituting in initial conditions in order to find a particular solution. Something akin to it may show up in your A Level Maths exam.

SW
Answered by Scott W. Maths tutor

3176 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The straight line with equation y = 3x – 7 does not cross or touch the curve with equation y = 2px^2 – 6px + 4p, where p is a constant. Show that 4p^2 – 20p + 9 < 0.


Solve 7x – 9 = 3x + 2


You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.


simplify (3x^2 - x - 2) / (x^2 - 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences