Suppose a population of size x experiences growth at a rate of dx/dt = kx where t is time measured in minutes and k is a constant. At t=0, x=xo. If the population doubles in 5 minutes, how much longer does it take for the population to reach triple of Xo.

2.925 minutes This question involves solving a first order differential equation via the separation of variables and then substituting in initial conditions in order to find a particular solution. Something akin to it may show up in your A Level Maths exam.

SW
Answered by Scott W. Maths tutor

3128 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate sin(2x)/x^2 w.r.t. x


A particle is in equilibrium under the action of four horizontal forces of magnitudes 5 newtons acting vertically upwards ,8 newtons acting 30 degrees from the horizontal towards the left,P newtons acting vertically downwards and Q newtons acting to right


What are the advantages of using numerical integration (Trapezium rule, Simpson's rule and so on) over direct integration?


Find the tangent to y = x^2 - 4x + 9 at the point (3,15)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences