Suppose a population of size x experiences growth at a rate of dx/dt = kx where t is time measured in minutes and k is a constant. At t=0, x=xo. If the population doubles in 5 minutes, how much longer does it take for the population to reach triple of Xo.

2.925 minutes This question involves solving a first order differential equation via the separation of variables and then substituting in initial conditions in order to find a particular solution. Something akin to it may show up in your A Level Maths exam.

SW
Answered by Scott W. Maths tutor

3202 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you determine the nature of a graphs stationary point? e.g y = 1+2x-x^2


Solve for -pi < x < pi: tanx = 4cotx + 3


A girl kicks a ball at a horizontal speed of 15ms^1 off of a ledge 20m above the ground. What is the horizontal displacement of the ball when it hits the ground?


express 9^(3x+1) in the form 3^(ax+b)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning