You are given that n is a positive integer. By expressing (x^2n)-1 as a product of factors, prove that (2^2n)-1 is divisible by 3.

X2n-1 = (xn+1)(xn-1) Therefore we can say 22n-1 = (2n+1)(2n-1) . As 2n is always even, a multiple of 3 is always either going to be 1 above or 1 below it, e.g. 3 is one below 4 and 9 is 1 above 8, therefore either (2n+1) or (2n-1) is going to be a multiple of 3, making the entire equation 22n-1 divisible by 3 as (2n+1) and (2n-1) are multiplied together, and they keep their factors.

AL
Answered by Abraham L. Maths tutor

9437 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)=(2x+1)/(x-1) with domain x>3. (a)Find the inverse of f(x). (b)Find the range of f(x). (c) g(x)=x+5 for all x. Find the value of x such that fg(x)=3.


Represent in partial fraction form the expression x/x^2-3x+2


Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.


How do you solve a Differential equation using integrating factors?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning