Integrate this funtion f'(x)=2x +4 with respect to x (C1 integration)

Solution to Answer:

y= (2x^2)/2 + 4x + C

Therefore:

y= x^2 + 4x + C

Steps on how to do C1 Integration

y = a*x^n

y = a*x^n is y = (a/n+1)*x^(n+1)

Therefore, our final answer in this case is y = (a/n+1)*x^(n+1) + C.​

We add the integration constant as when we defrentiate a function f(x) and have a constant in the equation, the constant goes. therfore when integrating we do the opposite of integration and hence add the integration constant C.

Differentiating the expression y=2x+2. 
The answer would be f'(x)= 2
Now when you integrate the expression f'(x) 
The answer would be y=2x 
Something is missing? 
As we don't know if there is a constant when we integrate and we also don't know its value we put the integration constant "C" to show the fact that there might be a constant. 
The correct answer for the integration of f'(x)=2 would be y=2x+c where c=2 in this case. 

SQ
Answered by Seair Q. Maths tutor

6608 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=x/(2x+5) find dy/dx.


Find the integral of 3x^2 + 4x + 9 with respect to x.


Integrate xsin(x) with respect to x


Consider the curve y=x/(x+4)^0.5. (i) Show that the derivative of the curve is given by dy/dx= (x+8)/2(x+4)^3/2 and (ii) hence find the coordinates of the intersection between the left vertical asymptote and the line tangent to the curve at the origin.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning