Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.

First take natural logs of both sides, giving us: ln(3x * e4x) = ln(e7).  The RHS can be simplified using the definition of natural logs, so ln(e7) = 7.

We can then apply the product rule for logs (ln(a * b) = ln(a) + ln(b)), which gives: ln(3x) + ln(e4x) = 7.

Using the power rule, (ln(ab) = b*ln(a)) and the def. of natural logs, the equation can be simplified further: xln(3) + 4x = 7.

Factorise by taking out the factors of x to give: x(ln(3) + 4) = 7.

Then divide both sides by (ln(3) + 4) to get the equation with x as the subject: x = 7 / (ln(3) + 4).

We now have an exact value for x and we can check the answer by substituting it back into the original equation and checking that we get e7.

HM
Answered by Hugo M. Maths tutor

4999 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive Law of Cosines using Pythagorean Theorem


What is 'completing the square' and how can I use it to find the minimum point of a quadratic curve?


Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28


Show that the integral of tan(x) is ln|sec(x)| + C where C is a constant.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences