Find the exact solution of the equation in its simplest form: 3^x * e^4x = e^7.

First take natural logs of both sides, giving us: ln(3x * e4x) = ln(e7).  The RHS can be simplified using the definition of natural logs, so ln(e7) = 7.

We can then apply the product rule for logs (ln(a * b) = ln(a) + ln(b)), which gives: ln(3x) + ln(e4x) = 7.

Using the power rule, (ln(ab) = b*ln(a)) and the def. of natural logs, the equation can be simplified further: xln(3) + 4x = 7.

Factorise by taking out the factors of x to give: x(ln(3) + 4) = 7.

Then divide both sides by (ln(3) + 4) to get the equation with x as the subject: x = 7 / (ln(3) + 4).

We now have an exact value for x and we can check the answer by substituting it back into the original equation and checking that we get e7.

HM
Answered by Hugo M. Maths tutor

5374 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(Core 2) Show that the region bounded by the curve y = 7x+ 6 - (1/x^2), the x axis and the lines x = 1 and x = 2 equals 16


Use the substitution u=2+ln(t) to find the exact value of the antiderivative of 1/(t(2+ln(t))^2)dt between e and 1.


Find the centre coordinates, and radius of the circle with equation: x^2 + y^2 +6x -8y = 24


A curve has the equation y = (x^2 - 5)e^(x^2). Find the x-coordinates of the stationary points of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning