Let y be a function of x such that y=x^3 + (3/2)x^2-6x and y = f(x) . Find the coordinates of the stationary points .

y = x3 + 1.5x-6x Hence, dy/dx = 3x2 + 3x - 6 Solve to find x when dy/dx = 0 as gradient is zero at stationary points Substitute the vaules for x back into y to find y coordinates of the stationary points. Then write out the coordinates as a final answer like so, (1,-7/2) and (-2,10)

MC
Answered by Michael C. Maths tutor

3983 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the binomial theorem and why is it true?


∫ x^3 *ln(2x) (from 2->1) can be written in the form pln 2 + q, where p and q are rational numbers. Find p and q.


Using the binomial theorem, find the coefficient of x^4*y^5 in (x-2y)^9.


The line y = (a^2)x and the curve y = x(b − x)^2, where 0<a<b , intersect at the origin O and at points P and Q. Find the coordinates of P and Q, where P<Q, and sketch the line and the curve on the same axes. Find the tangent at the point P.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning