Find dy/dx for y=5x^3-2x^2+7x-15

Step 1: To differentiate an equation there is a simple rule to follow. For y=axn dy/dx=anxn-1. so for an example y=x3, dy/dx=3x2. Therefore we just apply this rule into our equation.

Step 2: Break the equation down and do each factor of x seperately so 5x3 differentiates into 15x2, -2x2 differentiates to -4x, 7x differentiates to 7 and the 15 disappears from the end. This happens as the 15 just tells us where the line crosses the y axis and therefore has no bearing on the gradient.

Step 3: Put the differentiated parts back together to give the differentiated equation

dy/dx=15x2-4x+7

MT
Answered by Matthew T. Maths tutor

12295 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.


differentiate y = (4-x)^2


Solve for 0 =< x =< 360 16/(cos(x+25)+1) = 10, give answers to 2 d.p.


y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences