When finding the turning points of a curve, how can I tell if it is a maximum, minimum or a point of inflection?

To find the turning points of a curve one must find the values of x which satisfy dy/dx = 0. To further determine what type of turning point this is you need to compute the second derivative with respect to x, d2y/dx2. A maximum corresponds to a negative value of  d2y/dx2, a minimum corresponds to a positive value of d2y/dxand a point of inflection corresponds to  d2y/dx2 = 0. This becomes more intuitive when shown graphically, d2y/dx2 can be considered as the rate of change of the gradient of the tangent to the curve, so a maximum point will have a positive gradient go to a negative gradient, i.e. a negative rate of change of the gradient with respect to x. Similarly a minimum has a negative gradient go to a positive gradient, which is a positive rate of change. Finally a point of inflection is where the curve becomes flat, so the rate of change of the gradient is 0 as the gradient is at this point is 0.

BS
Answered by Ben S. Maths tutor

10288 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the positive value of x such that log (x) 64 = 2


The point P (4, –1) lies on the curve C with equation y = f( x ), x > 0, and f '(x) =x/2 - 6/√x + 3. Find the equation of the tangent to C at the point P , giving your answer in the form y = mx + c. Find f(x)


y = Sin(2x)Cos(x). Find dy/dx.


Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning