Solve for x, between 0 and 360 degrees, 4cos2 (x) + 7sin (x) – 2 = 0

Solve for x, between 0 and 360 degrees, 4cos2 (x) + 7sin (x) – 2 = 0 The way to approach this problem is to understand the relation that: sin2 (x) + cos2 (x) = 1 That equation can be rearranged to give: cos2 (x) = 1 - sin2 (x) Substituting that into the question, we get: 4 (1 - sin2 (x)) + 7sin (x) – 2 = 0 4 - 4sin2 (x) + 7sin (x) – 2 = 0 Rearranging and simplifing the above gives: 4sin2 (x) - 7sin (x) + 2 = 0 Now that is beginning to look like a quadratic! Substituting sin (x) with y (i.e. y = sin (x)), you get: 4y2 - 7y + 2 = 0 Using the quadratic equation the roots can be calculated: y = 2 or y = -0.25 Remembering that y = sin (x) sin (x) = 2 or sin (x) = -0.2 Since the range of possible values for sin (x) are between -1 and 1 only, we can ignore the first result, sin (x) = -0.25 Using our calculator arcsin (-0.25) = -14.478 Remember that the question wants the value to be between 0 and 360 degrees, we need to find the value that fits within the range Remembering how values of sin repeat themselves, we have 2 answers: 360 - 14.478, or 180 + 14.478 = 345.522, or 194.478

LZ
Answered by Luke Z. Maths tutor

11776 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the area under the curve with equation y = 5x - 2x^2 - 2, bounded by the x-axis and the points at which the curve reach the x-axis.


Find the equation of the tangent to the circle x^2 + y^2 + 10x + 2y + 13 = 0 at the point (-3, 2)


Find the values of k for which the equation (2k-3)x^2 - kx + (k-1) = 0


Find the first 3 terms and the sum to infinity of a geometric series with first term, 10 and common ratio 0.2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning