Solve for x, between 0 and 360 degrees, 4cos2 (x) + 7sin (x) – 2 = 0

Solve for x, between 0 and 360 degrees, 4cos2 (x) + 7sin (x) – 2 = 0 The way to approach this problem is to understand the relation that: sin2 (x) + cos2 (x) = 1 That equation can be rearranged to give: cos2 (x) = 1 - sin2 (x) Substituting that into the question, we get: 4 (1 - sin2 (x)) + 7sin (x) – 2 = 0 4 - 4sin2 (x) + 7sin (x) – 2 = 0 Rearranging and simplifing the above gives: 4sin2 (x) - 7sin (x) + 2 = 0 Now that is beginning to look like a quadratic! Substituting sin (x) with y (i.e. y = sin (x)), you get: 4y2 - 7y + 2 = 0 Using the quadratic equation the roots can be calculated: y = 2 or y = -0.25 Remembering that y = sin (x) sin (x) = 2 or sin (x) = -0.2 Since the range of possible values for sin (x) are between -1 and 1 only, we can ignore the first result, sin (x) = -0.25 Using our calculator arcsin (-0.25) = -14.478 Remember that the question wants the value to be between 0 and 360 degrees, we need to find the value that fits within the range Remembering how values of sin repeat themselves, we have 2 answers: 360 - 14.478, or 180 + 14.478 = 345.522, or 194.478

LZ
Answered by Luke Z. Maths tutor

11830 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


Simplify √32+√18 to a*√2 where a is an integer


Curve D has equation 3x^2+2xy-2y^2+4=0 Find the equation of the tangent at point (2,4) and give your answer in the form ax+by+c=0, were a,b and c are integers.


Find the value of x if the following is true: 3(x – 2) < 8 – 2x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning