What is the derivative of ln(x)?

First let y=ln(x).

Recall that the exponential function, ex, is defined as the inverse of the logarithmic function, ln(x).

To make x the subject of the formula, use the inverse function exp. This gives that x=ey.

Now, differentiate both sides with respect to y and recall that d/dx(ex)=ex. This gives dx/dy=ey.

Remember for a derivative, dy/dx=1/(dx/dy).

Therefore, dy/dx=1/ey.

Finally, from above, x=ey.

Substituting for ey we have dy/dx=1/x which is our final result.

Therefore the derivative of ln(x), is dy/dx=1/x.

BG
Answered by Benjamin G. Maths tutor

9771 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show how '2sin(x)+sec(x+ π/6)=0' can be expressed as √3sin(x)cos(x)+cos^2(x)=0.


Explain what is meant by a critical path.


Solve 8(4^x ) – 9(2^x ) + 1 = 0


Two fair six sided dice, called A and B, are rolled and the results are added together. The sum of the dice is 8, what is the probability that two fours were rolled?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning