Differentiate y=e^(x)*sin(x) with respect to x

y=e^(x)*sin(x)   

Use the product rule:   y'=uv'+vu'    y=u*v          

Differentiate: u=e^(x)   u'=e^(x)    v=sin(x)  v'=cos(x)

Sub into the product rule: y'=e^(x)*cos(x)+e^(x)*sin(x)

Take out a factor of e^(x): y'=e^(x)*(cos(x)+sin(x))

AJ
Answered by Alexander J. Maths tutor

4686 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What method should I use to differentiate equations with an x as the power of a number. E.g. 2^x


What is the sum of the first n terms of a geometric sequence and where does it come from?


An object of mass 2kg is placed on a smooth plane which is inclined at an angle of 30 degrees from the ground. Calculate the acceleration of the object.


Integral of (2(x^3)-7)/((x^4)-14x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences