Differentiate y=e^(x)*sin(x) with respect to x

y=e^(x)*sin(x)   

Use the product rule:   y'=uv'+vu'    y=u*v          

Differentiate: u=e^(x)   u'=e^(x)    v=sin(x)  v'=cos(x)

Sub into the product rule: y'=e^(x)*cos(x)+e^(x)*sin(x)

Take out a factor of e^(x): y'=e^(x)*(cos(x)+sin(x))

AJ
Answered by Alexander J. Maths tutor

4633 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?


Prove that n is a prime number greater than 5 then n^4 has final digit 1


Use logarithms to solve the equation 2^5x = 3^2x+1 , giving the answer correct to 3 significant figures.


Differentiate 2e^(3x^2+6x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences