integrate with respect to x the function f(x)= xln(x)

Use integration by parts

let u=ln(x)

let dv/dx=x

therefore du/dx=1/x and v=(1/2)x^2

therefore the integral of xln(x) is equal to the following:

(1/2)x^2ln(x) - (integral with respect to x of:((1/2)x^2)/x)

= (1/2)x^2ln(x) - (integral with respect to x of:((1/2)x))

=(1/4)x^2(2ln(x)-1) + c

(I will explain further how I reached this answer during the session with provision of the whiteboard to evaluate my integrals) 

PJ
Answered by Priya J. Maths tutor

2963 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of the equation y=x^2-8x+5 by completing the square.


Why does differentiation work like it does.


Prove that f(x) the inverse function of g(x) where f(x)= - 3x–6 and g(x)= - x/3–2


Sketch the graph y=-x^3, using this sketch y=-x^(1/3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning