integrate with respect to x the function f(x)= xln(x)

Use integration by parts

let u=ln(x)

let dv/dx=x

therefore du/dx=1/x and v=(1/2)x^2

therefore the integral of xln(x) is equal to the following:

(1/2)x^2ln(x) - (integral with respect to x of:((1/2)x^2)/x)

= (1/2)x^2ln(x) - (integral with respect to x of:((1/2)x))

=(1/4)x^2(2ln(x)-1) + c

(I will explain further how I reached this answer during the session with provision of the whiteboard to evaluate my integrals) 

PJ
Answered by Priya J. Maths tutor

3106 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

given that at a time t, a particle is accelerating in the positive x-direction at 1/t ms^-2, calculate the velocity and the displacement of the particle at time t = 2s


Find a solution to sec^(2)(x)+2tan(x) = 0


Find the derivative with respect to x, of 5cos(x)+ 4sin(x)


Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning