integrate with respect to x the function f(x)= xln(x)

Use integration by parts

let u=ln(x)

let dv/dx=x

therefore du/dx=1/x and v=(1/2)x^2

therefore the integral of xln(x) is equal to the following:

(1/2)x^2ln(x) - (integral with respect to x of:((1/2)x^2)/x)

= (1/2)x^2ln(x) - (integral with respect to x of:((1/2)x))

=(1/4)x^2(2ln(x)-1) + c

(I will explain further how I reached this answer during the session with provision of the whiteboard to evaluate my integrals) 

PJ
Answered by Priya J. Maths tutor

2858 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In what useful ways can you rearrange a quadratic equation?


What is the difference between differentiation and integration, and why do we need Calculus at all?


Find the turning points on the curve with the equation y=x^4-12x^2


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences