Hannah's sweet problem (Edexcel 2015): There are n sweets, 6 are orange, rest of the sweets are yellow. She takes 2 sweets randomly without replacing them and the probability that 2 orange sweets are chosen is 1/3. Show that n^2-n-90 = 0.

Draw a probability tree diagram. For this question, only two branches are required (orange and orange). At the start, there are n sweets in total, 6 are orange, so p(O) = 6/n. On our second pick, there are 5 orange sweets and the total number of sweets is n-1, so p(O) = 5/(n-1). Using the information given in the question that p(O and O) = 1/3, and using the probablities from the tree, we will arrive at the equation that we have been asked to shown. Since p(A and B) = p(A) x p(B), therefore (6/n) x (5/(n-1)) = 1/3. Manipulate this and the equation will come out.

YZ
Answered by Yimin Z. Maths tutor

5200 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the simplest form of the fraction (8a^2+10ab)/(12a+15b)?


Solve, by method of substitution, the simultaneous equations: 5x+y=22 2x+y=10


The equation of a straight line is 3x + 2y = 24. Find where the line crosses the x-axis.


Simplify (3x^2-8x-3)/(2x^2-6x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning