Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90

Expanding Rsin(x + a): Rsin(x + a) = Rsin(x)cos(a) + Rcos(x)sin(a) Comparing coefficients of sin(x), cos(x) with first expression leads to: Rsin(a) = 2, Rcos(a) = 5 Dividing these equations gives: tan(a) = 2/5 therfore a = arctan(2/5) Squaring and adding these equations gives: R^2(sin^2(a) + cos^2(a)) = 2^2 + 5^2 therefore R = root(29)

DH
Answered by Dan H. Maths tutor

11759 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (16x+78)/(2x^2+25x+63) as two fractions


Show that sin2A is equal to 2sinAcosA


y=20x-x^2-2x^3. Curve has a stationary point at the point M where x=-2. Find the x coordinate of the other stationary point of the curve and the value of the second derivative of both of these point, hence determining their nature.


Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning