Express 2cos(x) + 5sin(x) in the form Rsin(x + a) where 0<a<90

Expanding Rsin(x + a): Rsin(x + a) = Rsin(x)cos(a) + Rcos(x)sin(a) Comparing coefficients of sin(x), cos(x) with first expression leads to: Rsin(a) = 2, Rcos(a) = 5 Dividing these equations gives: tan(a) = 2/5 therfore a = arctan(2/5) Squaring and adding these equations gives: R^2(sin^2(a) + cos^2(a)) = 2^2 + 5^2 therefore R = root(29)

DH
Answered by Dan H. Maths tutor

10935 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)


Solve Inx + In3 = In6


Show, by counter-example, that the statement "If cos(a) = cos(b) then sin(a) = sin(b)" is false.


What is the equation of a curve with gradient 4x^3 -7x + 3/2 which passes through the point (2,9)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences