solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180

we start  y factoring and solving for each equation:

cos(x) (2cos(x) - 1) = 0 

this means: 

cos(x) = 0 and cos(x) = 1/2

from the first equation we get:   x = 90

and from the second equation using the known trigonometric triangles we get

x = 60

therefore x = 60, 90 in the interval asked.

DS
Answered by Dimitris S. Maths tutor

8464 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate e^(xsinx)


I struggle with integration, and don't understand why we need to do it


Find the values of x and y for which dy/dx = 0 in y= x^3 - 4x^2 - 3x +2


How would I go about solving 3(x-2) = x+7?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences