solve 2cos^2(x) - cos(x) = 0 on the interval 0<=x < 180

we start  y factoring and solving for each equation:

cos(x) (2cos(x) - 1) = 0 

this means: 

cos(x) = 0 and cos(x) = 1/2

from the first equation we get:   x = 90

and from the second equation using the known trigonometric triangles we get

x = 60

therefore x = 60, 90 in the interval asked.

DS
Answered by Dimitris S. Maths tutor

8608 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you find the coefficients of a monic quadratic when you know only one non-real root?


Solve the simultaneous equations: y-2x-4 = 0 (1) , 4x^2 +y^2 + 20x = 0 (2)


What is the indefinite integral ∫5exp(3-4x)dx ?


Solve x(5(3^0.5)+4(12^0.5))=(48^0.5) to the simplest form. (4 Marks)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning