The curve C has equation y=2x^2 -11x +13. (a) The point P has coordinates (2, – 1) and lies on C. Find the equation of the tangent to C at P.

We must firstly understand that the tangent at point P is linear, and we must use y = mx +c format for the equation. To calculate the equation we need to find the unknowns m and c. To find the unknown m which represents the gradient, we must differentiate equation (a), y=2x2 -11x+13; dy/dx = 4x-11 We know where we would like to find the gradient at point P, which has a corresponding x value of 2. We may input our value for x=2 into dy/dx = 4x-11; dy/dx = 4(2)-11; dy/dx=-3 i.e. our gradient, m at point P. To find the intercept c, we must input a co-ordinate we know on the tangent, co-ordinate P, and our gradient, recently calculated using differentiation as m = -3. Inputting gives us, y = mx + c ; (-1) = (-3)(2) + c ; c = 5 Therefore our equation of the tangent at point C is: y = -3x +5.

CK
Answered by Charles K. Maths tutor

6801 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.


Given that dx/dt = (1+2x)*4e^(-2t) and x = 1/2 when t = 0, show that ln[2/(1+2x)] = 8[1 - e^(-2t)]


Imagine a sector of a circle called AOB. With center O and radius rcm. The angle AOB is R in radians. The area of the sector is 11cm². Given the perimeter of the sector is 4 time the length of the arc AB. Find r.


Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning