(A) express 4^x in terms of y given that 2^x = y. (B) solve 8(4^x ) – 9(2^x ) + 1 = 0

(A) express 4x in terms of y given that 2x = y. we know that 22 = 4. so 4x  = 22^x = (2)2= y .so whenever you have 2C^D it doesnt matter which order you solve. you can do (2C)D or (2D)C         (B) solve 8(4x) – 9(2x) + 1 = 0 we can know that; 4x = y2 and 2= y so, 8(4x) – 9(2x) + 1 = 8(y2) - 9y +1 = 0 what we have left is a quadratic equation to solve (Ay + B)(Cy + D). we know that B and D must either be, both +1 or both -1. 8 can be formed by 4x2 or 8x1 so we know either A or C are 4 and 2 or 8 and 1. Ay X D = 8y X 1 = 8y.   Cy X B = y X 1 = y.   8y + y = 9y because it is -9y we know that B and D must be -1. Therefore the quadratic is = (8y - 1)(y - 1) = 0. but we are not finished yet. we have to solve the quadratic. 8y - 1 = 0. 8y = 1   (divide by 8) y = 1/8.  2x = 1/8 a negetive power flips the fraction and we know that 23 is 8. therefore  x = -3 second part of quadratic; (y - 1) = 0.   y = 1.    2x =1     x = 0 

ST
Answered by Sadat T. Maths tutor

33936 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I don’t think I’m smart enough for this course, should I drop it?


Differentiate y=(x^2+1)(e^-x)


Differentiate 2x^3+23x^2+3x+5 and find the values of x for which the function f(x) is at either at a maximum or minimum point. (Don't need to specify which is which)


Statistics: Dave throws a ball at a bucket. The probability the ball goes into the bucket is 0.4. Dave throws the ball four times. What is the probability that he gets it in twice?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences