Given that y=((4x+1)^3)sin2x. Find dy/dx.

To answer this we will need to use the product rule which is as follows: For y=uv, dy/dx=u'v+uv' where u' is the derivative of u and v' is the derivative of v.

In this case, u= (4x+1)^3 and v= sin2x. u'= 34(4x+1)^2 = 12*(4x+1)^2 and v'= 2cos2x. Therefore dy/dx= u'v+uv'= (12*(4x+1)^2)sin2x + 2((4x+1)^3)*cos2x.

BG
Answered by Benjamin G. Maths tutor

3409 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is a hypothesis test


The equation of a curve is xy^2= x^2 +1. Find dx/dy in terms of x and y, and hence find the coordinates of the stationary points on the curve.


Find the value of x if the following is true: 3(x – 2) < 8 – 2x


Find 1 + (1 + (1 + (1 + (1 + ...)^-1)^-1)^-1)^-1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning