Given that y=((4x+1)^3)sin2x. Find dy/dx.

To answer this we will need to use the product rule which is as follows: For y=uv, dy/dx=u'v+uv' where u' is the derivative of u and v' is the derivative of v.

In this case, u= (4x+1)^3 and v= sin2x. u'= 34(4x+1)^2 = 12*(4x+1)^2 and v'= 2cos2x. Therefore dy/dx= u'v+uv'= (12*(4x+1)^2)sin2x + 2((4x+1)^3)*cos2x.

BG
Answered by Benjamin G. Maths tutor

2974 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What method should I use to differentiate equations with an x as the power of a number. E.g. 2^x


When dealing with trigonometric functions such as sin, cos or tan, how do you solve the trigonometric equation when the argument of the function(s) is nx, where n is a real number not equal to 1.


Binomial expansion of (1+4x)^5 up to x^2


How do I know which method of integration to use?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences