Given that y=((4x+1)^3)sin2x. Find dy/dx.

To answer this we will need to use the product rule which is as follows: For y=uv, dy/dx=u'v+uv' where u' is the derivative of u and v' is the derivative of v.

In this case, u= (4x+1)^3 and v= sin2x. u'= 34(4x+1)^2 = 12*(4x+1)^2 and v'= 2cos2x. Therefore dy/dx= u'v+uv'= (12*(4x+1)^2)sin2x + 2((4x+1)^3)*cos2x.

BG
Answered by Benjamin G. Maths tutor

3322 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use Simpson’s Rule with five ordinates to find an approximate value for the integral e^(x^2)dx between the values of 0 and 1


How do you find the turning points of a graph and how do you if the point is a maximum or a minimum?


Complete the square for the following equation: 2x^2+6x-3=0


Find the stable points of the following function, determine wether or not they are maxima or minima. y= 5x^3 +9x^2 +3x +2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning