Differentiate x^3 − 3x^2 − 9x. Hence find the x-coordinates of the stationary points on the curve y = x^3 − 3x^2 − 9x

To differentiate, we bring the power down and decrease the power by 1. So x3 becomes 3x2, -3x2 becomes -6x, and -9x (which can be written as -9x1 ) becomes -9. So y' = 3x2 - 6x - 9 This equation tells us the gradient of the graph for any value of x, and we should be able to recall that at a stationary point, the gradient will be 0. We set y' to 0 and solve for x by factorising. 0 = 3x2 - 6x - 9 = (3x +3)(x - 3) So 3x + 3 = 0, hence x = -1 is a stationary point, and x - 3 = 0, hence x = 3 is a stationary point.

TD
Answered by Tutor105800 D. Maths tutor

10241 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise the following: 5a^3b^5-4ab^2


Integrate 2x^4 - 4/sqrt(x) + 3 dx


Find dy/dx of y = a^x


Find the derivative of x^3 - (y^2)x =3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning