Differentiate x^3 − 3x^2 − 9x. Hence find the x-coordinates of the stationary points on the curve y = x^3 − 3x^2 − 9x

To differentiate, we bring the power down and decrease the power by 1. So x3 becomes 3x2, -3x2 becomes -6x, and -9x (which can be written as -9x1 ) becomes -9. So y' = 3x2 - 6x - 9 This equation tells us the gradient of the graph for any value of x, and we should be able to recall that at a stationary point, the gradient will be 0. We set y' to 0 and solve for x by factorising. 0 = 3x2 - 6x - 9 = (3x +3)(x - 3) So 3x + 3 = 0, hence x = -1 is a stationary point, and x - 3 = 0, hence x = 3 is a stationary point.

TD
Answered by Tutor105800 D. Maths tutor

9902 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to solve polynomials


A curve has equation y = e^(3x-x^3) . Find the exact values of the coordinates of the stationary points of the curve and determine the nature of these stationary points.


What methods are there for integration?


Differentiate xcos(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning