A curve is defined for x > 0. The gradient of the curve at the point (x,y) is given by dy/dx = x^(3/2)-2x. Show that this curve has a minimum point and find it.

This is a typical exam style question, taken from an AQA paper. This question is testing your knowledge of stationary points and differentiation. Step 1: Find all stationary points by setting the first derivate to 0, and solving the equation. Step 2: Determine what type of stationary points those we found in step 1 are. This is done by obtaining the second derivative, and substituting in the x values found in step 1. (Optional step 3: interpretationFirst derivative - gradientSecond derivative - rate of change of gradient)

YC
Answered by Yishuang C. Maths tutor

4754 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

When do I use the product rule as opposed to the chain rule?


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


y = Sin(2x)Cos(x). Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning