Find the coordinates of the stationary point of the graph y = 3x^2 - 12x

Firstly, we need to differentiate the equation to find an equation for the gradient of the line.dy/dx = 6x-12We know the original graph was quadratic, and therefore only has one stationary point. This is when the gradient is equal to 0, and so we can set dy/dx to 0 to find this coordinate.6x-12=0 6x=12x=2We can then find the y coordinate by substituting into the original equation:3*(2)2 -12*2=12-24=-12So the stationary point is at (2, -12)

JM
Answered by Jack M. Maths tutor

6118 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


Factorise f(x)=3x^3+8x^2-20x-16 completely


Express 3x+1/(x+1)(2x+1) in partial fractions


Integral of e^x*sinx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences