Evaluate the following : ∫ln(x) dx

Integrate by parts:u = ln(x) u' = 1/x v' = 1 v = xBy parts formula: uv - ∫u'v dx Therefore we have: xln(x) - ∫x1/x dx = xln(x) - ∫1 dx = xln(x) - x (+c)

SM
Answered by Saaqib M. Maths tutor

6464 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A uniform ladder of mass 5 kg sits upon a smooth wall and atop a rough floor. The floor and wall are perpendicular. Draw a free body diagram for the ladder (you do not need to calculate any forces).


The curve C has equation y=(2x-3)^5, the point P lies on C and has coordinates (w, – 32), find (a) the value of w and (b) the equation of the tangent to C at the point P in the form y=mx+c , where m and c are constants.


How can I remember the difference between differentiation and integration?


How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning