Use the substitution u=x^2-2 to find the integral of (6x^3+4x)/sqrt( x^2-2)

First use the substitution to find du/dx which is 2x. From this we now know that dx= du/2x (just re-arranging.) Substituting that into the integral we now get (6x3+4x)/ (sqrt (u) x 2x) du. Cancelling out the 2x we now have (3x2+2)/ sqrt (u) du. This is equal to (3u+8)/ sqrt(u) du using the original definition of u. This is equal to 3u0.5+ 8u-0.5 du. Integrating this we get 2u1.5 + 16u0.5+ c and to get the final answer we just substitute for u.

KS
Answered by Khalil S. Maths tutor

10054 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By expressing cos(2x) in terms of cos(x) find the exact value of the integral of cos(2x)/cos^2(x) between the bounds pi/4 and pi/3.


Find ∫ (2x^5 - 1/(4x^3)-5) dx. giving each term in its simplest form.


Find the coordinate of the turning point of the curve y = x^2 - 10x + 7, by completing the square


Find the first four terms in the binomial expansion of (2 + x) ^5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning