Use the chain rule to differentiate y=(x-3)^(-3)

Hint: the chain rule states that for y=u(x) ^a, the derivative will be dy/dx = dy/du * du/dxSo we just need to find dy/du and du/dx!In this case u(x)=x-3, so du/dx = 1.from y=u^(-3), dy/du = -3u^(-4).This means we know dy/dx = -3u^(-4) * 1Converting from u to x, we get dy/dx = -3 (x-3)^(-4) .... done! 

RT
Answered by Rosemary T. Maths tutor

5331 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express (x+1)/2x + (2x+3)/(x+1) as one term


For a given function F(x), what does the graph of the function F(x+2) look like in comparrison to F(x)?


Find the turning points of the equation y=4x^3-9x^2+6x?


Express 4x/(x^2-9)-2/(x+3) as a single fraction in its simplest form


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning