Solve the simultaneous equations: 2x + y = 18, x - y =6.

There are 2 different ways to approach solving simultaneous equations: 1) making x or y the subject of one of the equations.2) addition or subtraction method.In this section, I will explain the first method. So firstly, I'm going to refer to 2x+y=18 as equation 1, and x-y=6 as equation 2. Then you make either x or y the subject of one of the equations. In this case, it is easiest to make x the subject of equation 2. This gives x= 6+y. You then can sub (6+y) which is equal to x, into equation 1, which gives 2(6+y)+y=18. You then expand the brackets to give 12+2y+y=18, and simplify to give 3y=6, which means y=2. We can then sub this value of y straight into the rearranged form of equation 2, x=6+y, to give x=8. Sub both values back into both of the original equations to ensure the values for x and y are both correct.

JG
Answered by Jamini G. Maths tutor

16811 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The straight line joining the points (1, -2a),(a, 1) has a gradient of 5, find the value of a


Solve the simultaneous equation: 2x + y = 18, x - y = 6


How do you solve linear inequalities such as: 5x – 2 > 3x + 11


In a class there are 57 students. Of these 32 study Spanish, 40 study German and 12 students study neither. How many students study Spanish but not German?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning