Differentiate y= 2^x

Initially this looks unlike all the other differentiation questions and seems unsolvable. However the expression 2^x can be rewritten in an equivalent form that will allow us to use the differentiation rules we already know. We know that e^(ln(x)) is the same as x, consequently e^(ln(2^x)) is 2^x. We know how to differentiate e to the power of a function of x by using the chain rule. If y=e^u, where u= ln(2^x), (this can be rewritten as 2lnx) then we have dy/du= e^u and du/dx= ln2. Multiplying these together to get dy/dx= ln2e^u. The u has to be converted back to its x form, (u=ln(2^x)), dy/dx= ln22^x. As long as the first step is remembered the rest is just applying the differentiation rules we already know.

MG
Answered by Max G. Maths tutor

7657 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of 3x^2 + 4x + 9 with respect to x.


What are the necessary conditions for a random variable to have a binomial distribution?


How do I calculate the reactant forces for the supports of the beam where the centre of mass is not same distance from each support?


How to integrate and differentiate ((3/x^2)+4x^5+3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences