Find the integral of 4/(1-x^2) dx:

The first thing to notice here is that the denominator of the integrand is a case of 'difference of two squares'. The integral, which I will call I, can be rewritten as the integral of 4/((1+x)(1-x)) dx. If you expand the brackets you will find the denominator gives (1-x2) as in the question. Now we can apply partial fractions to further simplify I. 4/((1+x)(1-x)) = A/(1+x) + B/(1-x) Multiply both sides by (1+x)(1-x). 4 = A(1-x) + B(1+x) Sub in x = -1 to eliminate B. 4 = 2A so A=2Sub in x = 1 to eliminate A. 4 = 2B so B=2 Now we can integrate using the fact that the integral of 1/y dy = lny + c. The integral of (2/(1+x) +2/(1-x))dx = 2ln(1+x) + 2ln(1-x) (-1) + c . There is a factor of -1 in the second term because it was (1-x). Factorise the 2 and use the subtraction of logs rule (lna - lnb = ln(a/b)), to give: I = 2ln((1+x)/(1-x)) + c

JP
Answered by Jemima P. Maths tutor

4661 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve, giving your answer to 3 s.f. : 2^(2x) - 6(2^(x) ) + 5 = 0


Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


Find the range of values of k for which x²+kx-3k<5 for some x, i.e. the curve y=x²+kx-3k goes below y=5


differentiate y=(4x^3)-5/x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences