Find the integral of 4/(1-x^2) dx:

The first thing to notice here is that the denominator of the integrand is a case of 'difference of two squares'. The integral, which I will call I, can be rewritten as the integral of 4/((1+x)(1-x)) dx. If you expand the brackets you will find the denominator gives (1-x2) as in the question. Now we can apply partial fractions to further simplify I. 4/((1+x)(1-x)) = A/(1+x) + B/(1-x) Multiply both sides by (1+x)(1-x). 4 = A(1-x) + B(1+x) Sub in x = -1 to eliminate B. 4 = 2A so A=2Sub in x = 1 to eliminate A. 4 = 2B so B=2 Now we can integrate using the fact that the integral of 1/y dy = lny + c. The integral of (2/(1+x) +2/(1-x))dx = 2ln(1+x) + 2ln(1-x) (-1) + c . There is a factor of -1 in the second term because it was (1-x). Factorise the 2 and use the subtraction of logs rule (lna - lnb = ln(a/b)), to give: I = 2ln((1+x)/(1-x)) + c

JP
Answered by Jemima P. Maths tutor

5666 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the trigonometric identity for tan(A + B), prove that tan(3x)=(3tan(x)-tan^3(x))/(1-3tan^2(x))


Given the circumference x^2 - 2x + y^2 = 3, find the position of the center P and the value of the Radius. Then find the intercepts with the y axis and the tangent to the circumference at the positive y intercept.


d/dx ( sin x) ^3


Given that y = 16x + 1/x , find the two values of x for which dy/dx = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning