Why does the constant disappear when differentiating a function?

We can think of the constant term in a function in terms of x, for example in x^2 + 3x + 2 as 2 being multiplied by x^0. Anything to the power of 0 is equal to one, so in our example we would have 2 * x^ 0 which is the same as 2 * 1 which is 2, but this trick allows every term to have x of a certain power. Differentiating first multiplies the power of the x term with the coefficient, then takes one away from the power- with the constant term, multiplying the coefficient, the 2, by 0, will cause the whole term to disappear before we get to the second step.

AP
Answered by Abdullah P. Maths tutor

12168 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What are the advantages of using numerical integration (Trapezium rule, Simpson's rule and so on) over direct integration?


Find the indefinite integral of cos^2 x


A cuboid has a rectangular cross section where the length of the rectangle is equal to twice its width x cm. THe volume is 81 cm^3. a) show that the total length L cm of the cuboid is given by L=12x+162/x^2


How to solve a quadratic equation?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning