Find the integral of 4/(1-x^2) dx:

The first thing to notice here is that the denominator of the integrand is a case of 'difference of two squares'. The integral, which I will call I, can be rewritten as the integral of 4/((1+x)(1-x)) dx. If you expand the brackets you will find the denominator gives (1-x2) as in the question. Now we can apply partial fractions to further simplify I. 4/((1+x)(1-x)) = A/(1+x) + B/(1-x) Multiply both sides by (1+x)(1-x). 4 = A(1-x) + B(1+x) Sub in x = -1 to eliminate B. 4 = 2A so A=2Sub in x = 1 to eliminate A. 4 = 2B so B=2 Now we can integrate using the fact that the integral of 1/y dy = lny + c. The integral of (2/(1+x) +2/(1-x))dx = 2ln(1+x) + 2ln(1-x) (-1) + c . There is a factor of -1 in the second term because it was (1-x). Factorise the 2 and use the subtraction of logs rule (lna - lnb = ln(a/b)), to give: I = 2ln((1+x)/(1-x)) + c

JP
Answered by Jemima P. Maths tutor

5656 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find and classify all the stationary points of the function f(x) = x^3 - 3x^2 + 8


Find the solutions of the equation 3cos(2 theta) - 5cos(theta) + 2 = 0 in the interval 0 < theta < 2pi.


The gradient of a curve is given by dy/dx = 6sqrt(x) + 2. The curve passes through the point (16, 38). Find the equation of the curve.


A particle of weight 15N is resting on a plane inclined at an angle of 30°. Find : a) the normal force exerted on the particle, b) the coefficient of friction between the particle and the plane, providing it is in limiting equilibrium


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning