Solve the simultaneous equations to find the values of x and y: 3x + 5y = -4 and 10x - 4y = -34

Firstly we need to remove one of the variables. We can use the fact that y has different signs to do this.
3x + 5y = -4 multiplied by 4 gives: 12x + 20y = -16
10x - 4y = -34 multiplied by 5 gives: 50x - 20y = -170
If we add these together we get: 62x = -186
If we divide both sides by 62, this gives: x = -3
Substituting this back into the first equation gives: -9 + 5y = -4
Adding 9 to both sides: 5y = 5
Therefore, dividing both sides by 5 gives: y = 1
This can be checked by substituting these values into the second equation: -30 - 4 = -34
Therefore, as both sides equal -34, we know these values are correct.

TD
Answered by Tutor112326 D. Maths tutor

4887 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

In a village the number of houses and the number of flats are in the ratio 7 : 4. The number of flats and the number of bungalows are in the ratio 8 : 5 . There are 50 bungalows in the village. How many houses are there in the village?


Solve x^2=4(x-3)^2


Prove that the square of an odd number is always 1 more than a multiple of 4.


Solve the simultaneous equations for x and y: 3x+2y = 14 and 5x-y = 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences