Prove that sqrt(2) is irrational

First, let's assume that sqrt(2) is rational. That is, it can be expressed in the form a/b, where a and b are integers and the fraction is simplified as far as possible.
So we have sqrt(2) = a/b --> 2 = a2/b2 --> a2=2b2. Since b2 must also be an integer, doubling it to a2 must be an even number. Only even numbers square to give even numbers, so a is also even. Let a = 2n, then a2 = 2b2 = 4n2 --> b2 = 2n2. From this we can see that b2 is even, so b must be too. We've now established that both a and b are even, but this means that the original fraction wasn't simplified as far as possible. This is a contradiction, so we can conclude that the assumption that sqrt(2) is rational is incorrect.

MW
Answered by Mark W. Maths tutor

4747 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the geometric series formula to find the 9th term in this progression : 12 18 27...


Find the derivative of A^4 + 2A^2 - 3A + 4


Why do you get e^x when you differentiate e^x


Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning